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Abstract 

X-ray spherical-wave focusing in multibeam dynami- 
cal diffraction by a biaxially bent single crystal has 
been considered. In contrast to cylindrical lenses 
already studied in the two-beam case, which presen- 
ted a line focus, here wave packets focusing in two 
directions into a single point are dealt with. The 
conditions for focusing of the trajectories of the X-ray 
Bloch waves are established and the algorithm for 
the determination of the parameters of corresponding 
X-ray optical systems is described. Possible sets of 
parameters are calculated. The X-ray wave field distri- 
bution in a crystal is simulated numerically. The 
calculated topographs confirm the existence of the 
focusing effect. 

0108-7673/85/010017-09501.50 

I. Introduction 

Optics for focusing X-rays and neutrons have been 
developed  in two main directions - Fresnel zone 
plates for soft radiation ( - 4 0 / ~ )  (Kirz, 1974; Kear- 
ney, Klein, Opat & G/ihler, 1980) and diffraction 
lenses based on single crystals for hard radiation 
( -  1 ~ ) .  The operation of such lenses is based on the 
effect of dynamical focusing of X-rays (or neutrons), 
which consists of the compression of coherent wave 
packets during dynamical scattering by single crystals. 
Until recently both theorists and experimenters have 
studied this effect mainly for two-beam diffraction 
(see references in the paper by Kushnir & Suvorov, 
1982). In this case wave packets can be compressed 
by a crystal only in one direction determined by the 
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18 X-RAY DIFFRACTION LENSES WITH SPHERICAL FOCUSING 

diffraction vector, and therefore the corresponding 
lens is cylindrical and has a line focus. 

Yet for the majority of practical applications, 
spherical focusing is required where wave packets are 
compressed by a crystal into a point and not into a 
line. Obviously, for the design of the corresponding 
X-ray optical system one should solve the three- 
dimensional problem of dynamical focusing, i.e. use 
multibeam noncoplanar diffraction. Baskakov & 
Zel'dovich (1978) have extended the idea of the 
diffraction focusing of X-ray Bloch waves in a double- 
crystal interferometer (Indenbom, Slobodetskii & 
Truni, 1974) to the multibeam case. It has been shown 
that the realization of such focusing for n-beam 
diffraction (n -> 3) is possible while using a 2n-crystal 
scheme (which meets serious experimental difficul- 
ties) with magnification equal to unity and resolution 

10 ixm, as in the two-beam case. 
The problem of spherical'wave focusing by a per- 

fect crystal has been studied theoretically (Homma, 
Ando & Kato, 1966; Kato, 1968; Afans'ev & Kohn, 
1977) and experimentally (Aristov, Polovinkina, 
Shmyt'ko & Shulakov, 1978) for two beams and then 
extended to the multibeam case by Kohn (1977). In 
terms of geometrical optics (Kato, 1963, 1964) focus- 
ing of a spherical wave by a crystal can be realized 
because a curved sheet of the dynamical dispersion 
surface transforms a family of diverging trajectories 
of X-rays in vacuum into a family of converging 
trajectories of Bloch waves in the crystal. The multi- 
beam dispersion surface is curved in two dimensions 
and therefore focuses beams in two directions but, 
generally speaking, at different depths (astigmatism). 
The conditions for focusing without astigmatism 
derived by Kohn (1977) consist of the compensation 
of the curvature tensors for dispersion surfaces of 
X-ray waves in vacuum and in the crystal. Yet Kohn 
gave no indication as to how these conditions could 
be realized. Magnification of such a lens is equal to 
unity, its resolution being - 1 0  Ixm. 

The aim of the present work is to extend the ideas 
of two-beam focusing by a bent crystal (Petrashen' 
& Chukhovskii, 1976; Kushnir & Suvorov, 1980) to 
the multibeam case. In the two-beam case, a crystal 
can be bent in such a way that the trajectories of the 
Bloch waves are still straight. This is achieved when 
the 'force' F (Kato, I963, 1964) is equal to zero: 

02(H, u) 
F =  : 0 ;  (1) 

OSoOS~ 

then the waves propagate as in a nonbent crystal. The 
bend manifests itself in the fact that the curvature of 
the crystal surface partially compensates for the cur- 
vature of the spherical wave front, thus increasing 
the effective source-crystal distance. For usual 
source-crystal distances L(of the order of a meter), 
the effective distance Le~ can reach several hundred 

meters. Owing to the bend in the crystal, the magnifi- 
cation K ~-Len/L of such a lens differs from unity 
and reaches values up to 103, its resolution, A tan 0 /K  
(A is the extinction length and 0 is the Bragg angle), 
being as high as 100 A. 

The present work considers possible ways of 
designing analogous lenses for multibeam focusing; 
such lenses are 'spherical' and not cylindrical and 
they focus waves in two directions. The crystal must 
be biaxially bent in such a way that the curvature of 
its surface should compensate for the curvature of 
the spherical wave front simultaneously in two direc- 
tions; this condition immediately imposes limitations 
on the crystal orientation. 

In § 2 the bending conditions which generalize (1) 
are described. The relation between the influence 
function of a crystal bent in the indicated way and 
the influence function for a plane crystal is then 
determined. In § 3 the problem of spherical-wave 
diffraction by a bent crystal is reduced to that of 
diffraction by a plane crystal; wave trajectories are 
determined and the caustic equation and conditions 
for focusing without astigmatism are derived. The 
requirements that should be met by the X-ray optical 
system of a diffraction lens are formulated. It is shown 
that the problem can be significantly simplified if the 
X-ray optical system has a symmetry plane. § 4 
demonstrates how the requirements stated above can 
be met. The characteristics of the desired X-ray 
optical system are obtained and compared with the 
results of numerical simulation. 

2. Multibeam dynamical diffraction by 
a bent crystal 

If a diffraction lens is to form an image with high 
resolution, it should focus broad coherent wave pack- 
ets. This requires that each beam at the exact Bragg 
position on the entrance surface of the crystal should 
form, due to diffraction, a coherent wave packet of 
maximum possible dimensions. But the deviation 
from the exact Bragg position varies over the crystal 
depth while the beam propagates in the bent crystal; 
a diffracted beam appears at a site where the deviation 
from exact Bragg angle is zero. Therefore, it is 
necessary that the Bragg condition should be satisfied 
for each beam over the whole crystal thickness. 

Now, let us find the deviation from the Bragg 
position for a beam in a crystal having the displace- 
ment field n(r). The crystal polarizability X is 
described by its Fourier series with terms 

xHexpEiq~(r)J--xnexp[i(H°,r-u)], (2) 
where H ° is the reciprocal-lattice vector for an ideal 
crystal. The effective local vector of the reciprocal 
lattice is changed according to the law 

H = Vq~ = H ° -  V(H °, u) (3) 
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and, consequently, the local deviation from the Bragg 
condition for a beam characterized by its wave vector 
k is also changed: 

812(k, H ) + H E ] = - 2 ( k + H  °, V)(H°, u). (4) 

The deviation is constant along the beam only if 

(k, V)(k+H °, V)(H°,u) =0. (5) 

Equation (5) is the condition for the dynamical 
character of the scattering over the whole crystal to 
be maintained: for a beam incident at a given angle, 
the local deviation from the exact Bragg condition is 
constant and the beam experiences dynamical diffrac- 
tion along its whole path through the crystal. In the 
two-beam case, (5) reduces to (1), which means that, 
in spite of the bending, the force affecting the ray 
trajectory in a crystal remains equal to zero. In the 
case of multibeam diffraction this condition should 
be satisfied for any pair of beams (kj and kt are the 
corresponding wave vectors satisfying exactly the 
Bragg law): 

(kj, V)(ks V)(kj-k, ,  u) =0. (6) 

Now let us determine the form of a wave field in 
a crystal, the deformation of which satisfies (6). For 
n-beam diffraction the X-ray field is a superposition 
of n strong waves: 

D = ~ D~ °) exp [i (kj, r)]. (7) 
j = l  

The amplitudes D) °) satisfy the Takagi (1969) 
equation: 

2i(kj, V)DJ°)+ k 2 ~ Xjt[a~°)]j exp [-/(H°t, u)]= 0, 
l = l  

(8) 
where k is the magnitude of the wave vector in 
vacuum (k = kj ): Xjt are the Fourier components of 
the crystal polarizability; Hj ° are the reciprocal-lattice 
vectors, Hj°l = k j -  kz; [DI]j is the projection of vector 
Dt onto the plane normal to kj. 

Substituting 

D~ °)= DJ x) exp [-i(kj, u)] (9) 

into (8), we arrive at 

2[i(kj, V)+(kj, V)(kj, u)]DJl)+k 2 ~ Xjt[D~l)]j =0. 
/=1 

The solution of the system is sought in the form 

DJ l)= DJ 2) exp [i~(r)], (10) 

n (2) (r) is the solution of the Tagaki equations where _ j  
for a plane crystal; q~(r) is a real phase, independent 
of the label j of the beam. The value of the phase 
should be obtained through the set of equations 

(kj, 17)tP = (kj, V)(kj, u) -- Fj. (11) 

The equality of the mixed derivatives 

(k,, V)Fj = (kj, V)F! (12) 

is a necessary condition for the existence of solutions 
to (11). This coincides with the conditions for the 
dynamical character of scattering (6). 

If n = 3  (space dimensionality), (12) is also 
sufficient. For n = 3, the left side of (11) contains the 
derivatives along all three independent space direc- 
tions (kj, V)=kO/Osj; (12) can be rewritten in the 
form rots Fs = 0, where subscript s denotes the vector 
operations in space (s,, s2, s3) and vector Fs denotes 
the set of components Fj. Since a vector whose curl 
is zero can be represented in the form of the gradient 
of a certain scalar ~, Fs =grads t/,. This equality 
coincides with (11) and proves the existence of the 
solution for the system. 

If n -> 4, the number of equations in (11) exceeds 
the number of unknowns. Operators (kj, V) for n -> 4 
can be represented by linear combinations of O/Osi 
( i=1 ,2 ,3 ) ;  then for the consistency of (11) it is 
necessary that the right-hand sides of the correspond- 
ing equations can be represented by the same linear 
combinations of the right-hand sides of the first three 
equations. These conditions can be met, for example, 
if the problem possesses a certain symmetry. 

Now, let us determine the explicit form of phase 
q~ for a uniformly bent thin parallel plate. In this 
case the displacement u(r) is a quadratic function of 
coordinates and therefore the components e ~  of the 
strain tensor are, in the isotropic approximation, pro- 
portional to z (Landau & Lifshits, 1969, § 11) (z being 
the coordinate normal to the surface of the plate); 
the corresponding proportionality coefficients 
e,~(z)/z are constant along the whole plate, i.e. 
independent of coordinates x and y. The components 
of the stress tensor o-~ are also proportional to z 
and, according to Sirotin & Shaskol'skaya (1979, 
§ 53), will also be proportional to z for the case of 
an arbitrary anisotropy. Thus, the quantities F~ = 
kj~kj~e~ are also proportional to z: Fj = f f ,  where fj 
are coordinate independent. The solution of (11) has 
the form • = Coz2/2 ,  where 

f, f2 _fn 
CO-g,z-k2z-.. .-k--~z. (13) 

The uniform bend of a thin plate is fully determined 
by three parameters, namely the main radii of the 
surface curvature for the plate and the orientation of 
the main normal sections (see Appendix). If n = 3, 
two independent conditions of the type (13) fully 
determine the orientation of the main normal sections 
and the ratio of the main curvature radii. If n _> 4, the 
uniform bend satisfying the conditions of dynamical 
scattering (6) is possible only if among (n - 1) condi- 
tions (13) only two are independent. Thus, in the case 
of a uniformly bent crystal and under the conditions 
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of dynamical scattering (6), the solutions of Takagi 
equations (8) have the form 

DJ°) = DJ 2) exp{i[Coz2/2-(kj,  u)]}, (14) 

where DJ 2) are the solutions for a plane crystal. 
From this the relation between the influence func- 

tion for the bent crystal, Gb(ro, r) (describing the 
amplitude of the j th  beam at point ro inside the crystal 
illuminated by a narrow beam at point r of the 
entrance surface), and the corresponding multibeam 
influence function for the plane crystal GP(ro-  r) can 
be obtained: 

Gb(ro, r) = Gf(ro_r) exp [i( Coz2/2_(kh u)) ;o], (15) 

3. Spherical wave focusing 

We now consider the multibeam diffraction of a 
spherical wave from a biaxially bent crystal and deter- 
mine the conditions for the wave to be focused by 
the crystal. Let a spherical wave from a point source 
S fall on a biaxially bent parallel-sided single-crystal 
plate (Fig. l) so that the Bragg conditions are fulfilled 
for n-wave noncoplanar diffraction. We assume the 
plate to be thin (i.e. thickness is much less than the 
two other dimensions) and uniformly bent (with a 
constant strain gradient). The shape of the surface 
for a biaxially bent plate is described by the 
expression 

( X2 y2 ) 
- + + f l x y  (16) uzlz=o = 2R:, 2Ry 

where x and y are the coordinates along the surface 

% 
Y 

e3 e2 e~ 

eaeSc e ~  6'' Z 

Fig. 1. X-ray optical system for a diffraction lens. S is the point 
source, MON is the bent entrance surface of a crystal, Oz is 
normal to this surface at a point O; OABC is the Borrmann 
pyramid appearing during illumination of point O by a narrow 
beam; OK is the normal to the plane ABC forming equal angles 
/3 with OA, OB and OC; el-e6 are the unit vectors of the 
polarization, 0 is the Bragg angle, $ is the angle between OK 
and Oz. 

of the nonbent plate, while three parameters 1/Rx, 
1/Ry and fl characterize the bending. The phase of 
a spherical wave varies along the bent surface of the 
crystal r ' =  r + u ( r ) ;  r =  (x, y, 0) according to the law 

~ ( t )  = k r ' - L ]  

=(k~,r)+(Ax2+2Bxy+Cy2)/2,  (17) 

where 

A =  k (  1 -  72x 7~f) y- , 

C = k 1 -  y "y.._~z 
Ry ' 

rs is the radius vector of the source S, L is the distance 
between the source S and point O, 7x, 7y, 7z are the 
direction cosines of the wave vector k~ of the incident 
beam. 

The wave field inside the crystal is described by 
the convolution of the incident spherical wave with 
the influence function 

D(ro)OC Y. ~ exp [ics(r)]Gb(ro, r) 
3=1 

×exp [i(kj, ro -  r')] dx dy. (18) 

Substituting r ' =  r +  u(r), using (15) (in order to intro- 
duce the influence function for a plane crystal), and 
omitting the constant phase factors, we arrive at 

D(ro) °c i ~ exp [i(Ax 2 + 2Bxy+ Cy2)/2] 
j=l 

× GP(ro-  r) dx dy. (19) 

Thus, the problem of the diffraction of a spherical 
wave by a bent crystal reduces to that of diffraction 
by a plane crystal but with different boundary condi- 
tions (17) and additional degrees of freedom, namely 
the bending parameters of the entrance surface of the 
crystal. Since the explicit form of the multibeam 
influence function for a perfect crystal is not known, 
it is more convenient to expand the incident wave in 
plane waves and determine the focusing conditions 
in terms of the dispersion surface of a perfect crystal. 

In a perfect crystal a plane incident wave generates 
the set of Bloch waves. It is convenient to introduce, 
for each beam, two polarization vectors e, normal to 
the corresponding wave vector kj (our choice of the 
polarization unit vectors coincides with that of Bas- 
kakov & Zel'dovich (1978) and is shown in Fig. 1) 
and to arrange the components of vectors Dj 
(obtained from the expansion with respect to these 
polarizations) in a single-column vector of 
dimensionality 2n. Then the eigenfunctions of the 
Takagi equations for a perfect crystal (Bloch waves) 
can be written in the form 

V(p, q) exp [i(px + qy+ s(p, q)z)], 
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where V is the vector column of dimensionality 2n 
and p and q are determined by the deviation of the. 
incident plane wave from the exact Bragg conditions. 
Substituting this expression into the Takagi equations 
(8) and assuming a zero value of the displacement 
field (u = 0), we obtain the system of equations which 
determines V(p, q) and s(p, q): 

[/-t (p, q ) -  st~]V = 0; (20) 
.the components of the matrices /4 and t~ can be 
written as 

k 2 
njl=--~ Xjl(ej, el)-Sjl(  kjxP -b kjyq); 

Oj, = 

where ej are the polarization unit vectors, subscripts 
j and I run over the values 1, 2 , . . . ,  2n, the component 
of each of the n wave vectors of the problem entering 
the diagonal elements twice in succession. Pre- and 
postmultiplication of the matrix involved in (20) by 
the diagonal matrix with components Tjl = 8jllkjz 112 
leads to the equivalent system of equations 

( U -  s/~)W = 0, (21) 
A A A A 1 

where U = THT, W = T-  V, /~ being the unitary 
matrix. All the 2n eigenvalues sm(p,.,q) ( m =  
1, 2 , . . . ,  2n) of the symmetrical matrix U are real 
and determine 2n sheets of the dispersion surface. 
The corresponding eigenvectors Wm(j0, q) are 
orthogonal and can be chosen in such a way that 

(Wj. W,) = ~j,. 

The vectors Vm are orthogonal with the 'weight' (~: 
A 

( V j ,  Q V , )  = t~j,. 

Now, using the Fourier transformation of convolution 
(19), we may proceed to the summation of Bloch 
waves 

2 n  

D(x, y, z ) =  ~ ~(Vm, 0Os)Vm 
m = l  

× exp [i(½ap 2 + bpq + ½cq 2 +px + qy 

+ smz)] dp dq, (22) 

where Ds is the amplitude of the incident spherical 
wave (the incident beam is considered to be the first, 
so that the two first components of the column vector 
D s have non-zero values). Parameters a, b and c of 
the Fourier transform of the incident spherical wave 
are related to parameters A, B and C in (17) by the 
expression 

The stationary-phase conditions for (22) lead for each 
sheet of the dispersion surface to the trajectory 

equations x = x(z),  y = y(z)  for the beam correspond- 
ing to the point (p, q) of the dispersion surface: 

ap + bq + x + spz = O 
(24) 

bp+ cq + y+  sqz =O, 

where sp and Sq are the corresponding partial deriva- 
tives, the subscript m of the chosen dispersion surface 
sheet being omitted. Now, let us find the caustics for 
the rays described by (24). For that, we calculate the 
trajectory displacement at a depth z caused by a small 
displacement (dp, dq) of the excitation point (p, q) on 
the dispersion surface; the condition for zero dis- 
placement of the trajectory indicates that, at a given 
point, the trajectory is in contact with the caustic: 

-_re(s,, :)3(<")-o. 
1.. \Spq Sqql dq 

The condition for the existence of solutions, i.e. 
det h~/(Z) - 0, determines two values of z~,2(p, q) cor- 
responding to focusing of the bundle of trajectories 
in two perpendicular directions, at different depths 
(astigmatism); the values of Z~,E(p, q) together with 
(24) determine, in the parametric form, two sheets of 
the caustic corresponding to the given sheet of the 
dispersion surface. For each of the values of z~,2, (25) 
determine the values of dp/dq;  this in turn deter- 
mines, in the plane (p, q), two local directions 
'rl,E(P, q) such that the displacement of the point (p, q) 
along the dispersion surface in these directions results 
in the intersection of the corresponding trajectories 
at a depth z~,2. Focusing without astigmatism at.depth 

c ¢ t occurs when the focus depths are equal, z~ = z2 = t. 
This condition reduces to M ( t ) =  0 either when the 
main radii of the curvature of the dispersion surface 
are of the same sign or when the problem has a 
symmetry plane. In both cases, the focusing without 
astigmatism conditions reduces to 

- l(spp Spq~ -l (26) 

On the other hand, the caustic may have a singularity 
if the derivative of z~(p, q) (i = 1 or 2) along the 
direction "ri(p, q) is equal to zero. Obviously, the 
brightest focus is formed if both conditions are fulfil- 
led simultaneously: the condition for focusing 
without astigmatism (26) and the condition for the 
formation of a singularity on the caustic. 

The problem of focusing is significantly simplified 
if the X-ray optical system has a plane of symmetry. 
Let the x axis lie along the symmetry plane and the 
y axis be normal to it. Then Rx and R e are the main 
radii of the curvature of the crystal entrance surface 
(17) and/3  = 0. Among the conditions of dynamical 
scattering (6) only one remains independent, this 
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condition determines the allowed value of the ratio 
Rx/Ry for a given orientation. The source (Fig. l) is 
in the symmetry plane and therefore yy = 0. The dis- 
persion surface also possesses a plane of symmetry, 
i.e. s,,(p, q) = s,,(p, -q) .  The sought-for focus is such 
that q = 0 and Spq(p, 0)=  0. The conditions of trajec- 
tory focusing (26) reduce to 

k ( l -  3,2 3,.) l k ( l _ % ~  1 (27) 
L ~ - t S p p '  \ L  Rr]-tS-qq' 

where derivatives spp and Sqq a r e  calculated at point 
(PF, 0) of the dispersion surface chosen for focusing. 
This point is determined by the condition for the 
formation of a singularity on the caustic 

s,,,,,,(pF, 0)=0. (28) 
In the next section it will be shown how it is possible 
to satisfy simultaneously conditions (6), (27) and (28) 
in the case of three-beam diffraction. 

4. Focusing in the three-beam case 

Consider the problem of focusing in the three-beam 
case when the X-ray optical system has a plane of 
symmetry. The diffraction vectors must be chosen so 
as to form an isosceles triangle with a base of (110) 
type. Fig. 2 shows the dispersion surface for this case. 

Now let us define the angle ~b, which is the angle 
between the normal to the ABC plane and the normal 
to the crystal surface (Fig. l), the plane of symmetry 
being preserved. For this we should estimate the 
orders of magnitude of the terms in (27). Since spp -.- 
Sqq -- 1/(kx), we obtain, for distances appropriate for 
the experimental realization of focusing (L = 1 m, t = 
200~m) the value k/L>_ lO0/(tSpp). Thus, the two 
terms on the left-hand sides of (27) should almost 
compensate for each other; in other words, the crystal 
bend should almost compensate for the curvature of 
the incident wave front. The condition of complete 

~Q2 

A 

0 

-Qt 

-02 
- 0 2  -0t  0 0.t O2 

P r?,,n-q---- 
Fig. 2. The sections of the dispersion surface at the plane of 

symmetry in the three-beam case. 331, 313 reflections, Mo Ka 
radiation. 

compensation of the curvatures R y / R x = l - y  2 
together with (6) determine a certain angle 0o; the 
tilt angle chosen for the realization of focusing should 
only differ slightly from 0o. Note that the parameters 
of the calculated X-ray optical systems strongly 
depend on the difference 0 - 0 o .  

Setting the tilt angle ~ and using the expressions 
derived in the Appendix, one can calculate the elastic 
field u(r) depending on Rx and Ry; then the condition 
of dynamical scattering (6) will determined the ratio 
R,,/Ry. At a given $ the condition for the appearance 
of a singularity on the caustic (28) determines the 
desirable point PF of the dispersion surface and the 
values of Svp(PF , O) and Sqq(PF, 0). TO determine these 
derivatives numerically it is convenient, as was sug- 
gested by Kohn (1976), to invoke the perturbation 
theory. Then 

s(m)/_ p t/', q)=(Win 00/0piWm), 

s~p'~)(P, q)= 2 ~ ((Wm[OU/Op[Wj))2 
j # m  S m - -  S j  

Similar expressions can also be written for other 
derivatives. Here, s,,(p, q), and Wm are the eigen- 
values and eigenvectors of (21), respectively, calcu- 
lated at point (p, q). In the derivation we have used 
the fact that matrix U linearly depends on p and q: 

O Uj,/ Op = -Sj, kjx/ kjz. 

Since multiplication of quantities Rx, Ry, L and t by 
the same factor does not change the focusing condi- 
tions, one of these quantities, say t, can be set 
arbitrarily. Then the focusing conditions (27) for 
trajectories determine the quantities L, Rx and Ry, 
thus leading to the determination of still unknown 
parameters of the sought-for X-ray optical system. 

Now the only problem left is the determination of 
the lens magnification. When the source is displaced, 
the direction SO (Fig. l) of the wave vector k of the 
incident wave is different from that of the wave vector 
k~, which satisfies the exact Bragg condition. This 
results in the appearance of an additional term ( k -  
kl, r) in expansion (17) of the spherical wave phase. 
Relating the difference k - k ~  to the source displace- 
ment in directions x and y one can readily obtain the 
corresponding displacement of the focus and, thus, 
calculate the magnification coefficients in directions 
x and y: 

%R~ Ky= 1 - % L  - '  ' Ry / (29) 

For a nonbent crystal the problem is translation 
invariant in the (x,y) plane and the magnification 
coefficients are equal to unity. Bending the crystal, 
we can reach the value K ~ 100 (see below). 

As an example let us calculate the parameters for 
an X-ray optical system for 331, 313 Mo Ka diffrac- 
tion from a silicon crystal. Here 0o = -  l1.481 mrad; 



V. I. K U S H N I R ,  V. M. K A G A N E R  A N D  E. V. SUVOROV 23 

Table 1. Distributions of  wavefields in a crystal 

Thickness t = 200 ixm in all cases; 

Branch L Rx Ry 
Radiation Reflections number Polarization* (mm) (mm) (mm) 

__ 
Mo  K a  331,313 1 1,4 201 220 190 

2 2, 3 201 219 189 
2 2, 3 401 445 382 __ 

224, 224 1 1,4 197 220 181 
311,131 1 2 ,3  206 249 174 __ 

A g K c t  331,313 1 1,4 201 212 190 __ 
224, 224 1 1, 4 211 226 202 __ 
224, 242 1 2, 3 200 234 173 

* Polarizat ions in incident  and diffracted beams. 

Magnification zF 
(rad) Kx Ky (~m) 

-0"01066 62"6 81"4 174 
-0"01042 61"3 86"5 170 
-0'009335 30"7 43"3 

0.02700 73"5 ll4 205 
0"1490 91"8 139 216 

-0"02564 62"5 76"6 158 
0"01197 68"6 87"2 179 
0"006152 225 369 200 

if  ~ is chosen in such a way that L / t - "  1000 (~ = 
-10 .42  mrad)  and  t = 200 Ixm, the source-crystal  dis- 
tance calculated by the above algori thm is L = 20.1 
cm, and the curvature radii  are Rx = 21.9 and Ry = 
18.9 cm. Fig. 3 shows the caustic sheets corresponding 
to such an X-ray optical system. The sheets touch 
each other at a point  where one of them has a singular- 
ity. The magnif icat ion coefficients are Kx = 61.3 and 
Ky = 86.5. 

For the calculated X-ray optical system we have 
obta ined the distr ibutions of  wave fields in a crystal. 
The fields were calculated as the superposi t ion of  the 
solutions of  the plane-wave problem (21) in the form 
of  integral (22) over the dispersion surface, the 
summat ion  being carried out over all its sheets. The 
calculat ions proved that the focus (a point  with the 
m a x i m u m  intensity) does not coincide with the singu- 
larity on the caustic surface but  lies at a slightly 
different depth  ZF (Table 1). These discrepancies  are 
due to two different factors: firstly, the shape of  the 
chosen sheet of  the dispers ion surface differs from a 
paraba lo id  and,  secondly,  the contr ibutions to the 
intensity also come from other Bloch waves (other 

branches  of  the dispers ion surface). The intensi ty 
distr ibut ion in the region of  focusing is shown in Fig. 
4. Figs. 5 (a ) , (b)  and (c) show the intensi ty distribu- 
tions for sections paral lel  to the xz, yz and xy planes  
passing through the focus. The first two sections of  
the crystal are normal  to its entrance and exit surfaces, 
the third one coinciding with the exit surface (a 
topograph).  The incident  wave was taken to be polar- 
ized in the e2 direction, and the intensity of  the diffrac- 
ted wave polar ized in the e3 direction was calculated.  

The results of  the calculat ions (Figs. 4 and 5) show 
that, for this X-ray optical  system and with the para- 
meters found,  the incident  spherical  wave experiences 
a diffraction compress ion (focusing) ; the focus width 
at midheight  is A f ,  = 15 and  Afy = 9 ~m and the shape 
of  the focus is close to elliptic with the semiaxis  ratio 
of  1.67. At magnif icat ions Kx =61.3  and Ky = 86.5 
the resolution in the object p lane is 

A ~ , , = a f x / K x = 0 . 2 4  ' a ~ y = A f y / K y = O ' l O ~ m .  

The values are approximate ly  equal  to the diffraction 
resolution l imit  of  a circular lens with d iameter  dB= 
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Fig. 3. Section at the. xz plane of symmetry of the caustic surface 
corresponding to the second (from top) sheet of the dispersion 
surface shown in Fig. 2. The solid line corresponds to beam 
focusing in the plane of the drawing, dashed line to that in the 
normal direction. 
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Fig. 4. Intensity distributions of a diffracted beam along the lines 
parallel to x (solid line) and y (dashed line) axes passing through 
the focus (for parameters see Table 1, line 4). 
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73 ixm, inscribed into the base of the Borrmann 
pyramid: 

A¢ = A A / d ~  "- O. 19 ixm. 

. ) ~zzz ' z zz . ,  - 
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Fig. 5. Intensity distribution of  a diffracted beam in sections 
parallel to planes (a)  xz, (b) yz, and (c) xy passing through the 
focus (for parameters see Table 1, line 2). 

Of course, the inverse X-ray optical system (with the 
source at the crystal surface and the focus far from 
it, near the center of curvature) should operate as a 
reducing lens (Kx = 1/61.3 and Ky = 1/86.5) with the 
focus dimensions Afx = 0.24 and  Afy = 0 . 1 0  lxm. 

The results obtained show that a biaxially bent 
single crystal can operate as a spherically focusing 
X-ray lens having a magnification different from 
unity, if the following requirements are met. 

I. Scattering in a bent crystal is maintained to be 
dynamical. 

2. The trajectories are focused into a point without 
astigmatism. 

3. The caustic surface has a singularity at the same 
point. 

The presence of a plane of symmetry in the X-ray 
optical system simplifies the problem and permits one 
to calculate all the parameters of the system (Table 1). 

Though aberrations displace a point with the 
maximum intensity in the crystal relative to the caustic 
singularity, the dimensions of the focus obtained are 
close to the diffraction limit. Thus, dynamical focus- 
ing in multibeam diffraction from bent crystals could 
be used in the designing of new focusing elements 
for coherent X-ray and neutron optics. 

The authors are indebted to Professor V. L. Inden- 
born, Dr F. N. Chukhovskii and Dr V. G. Kohn for 
valuable discussions. Gratitude is also expressed to 
Dr I. R. Entin, Dr V. V. Tatarskii and Dr V. E. Fradkov 
for their help in computer programming. 

APPENDIX 

Displacement field in a uniformly bent crystal 

As has already been noted, we restrict ourselves to 
the consideration of a uniformly bent crystal where 
all the components of stress and strain tensors are 
proportional to coordinate z: 

oo = o % 1 t ,  eo = e ° z l  t. (30a, b) 
The coefficients of proportionality are coordinate 
independent. The most general form of the displace- 
ment field satisfying (30b) is 

XZ Z 2 

ux = - - +  flyz + a,, --~ 
Rx 

Z2 
Uy yz + flxz + - -  

Ry Cry 2 

( x2 Y 2 z2) 
: -  + + flxy + a z - f  . Uz 2Rx 2Ry 

(31) 

Parameters ax and av are the curvatures of the atomic 
planes with normals x and y, respectively; az is related 
to nonuniform extension and compression of a 
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material  of  the plate along the z axis;  parameters  Rx, 
Ry, and 13 describe the shape of  the bent  plate surface 
(16) and therefore their  ass ignment  fully determines 
the d isp lacement  field. We shall  now determine the 
relation between these parameters  and the three other 
parameters  ax, Oty and a~. We express them via con- 

0. stants e 0. 

t /  Rx o t a x / 2 =  o = 8 x x  8 x z  

0 tO~y/2 = 0 t/3 ~ E xy E y z 

0 
t~ Ry = Eyy  - to t  z = e°z. 

(32) 

The boundary conditions on the plate surface with 
normal z have the form (Landau & Lifshits, 1965) 

tr= = %z = Crzz = O. 

Therefore, the components of a strain tensor may be 
expressed via the three remaining components of the 
stress tensor: 

()  (I l xx, " x z  = 

) 
\ Eyy I \ Oryy I \ Ezz / \ Oryy I 

Here the known and unknown components of the 
strain tensor are arranged for convenience in two 
separate column vectors. Matrices S, and $2 are 
related to tensor S of elastic compliance constants: 

S , = .  Sxyxx 2Sxyxy Sxyyy., 

 Syyxx Sy.y] 
(34) 

S2 = Syzxx 2Syzxy Syzyy .. 

Szz= 2Szzxy & z . , ]  

The factor 2 here takes into account the contr ibut ion 
of  stresses oxy and Oyx to the deformation.  

In turn, the components  of  tensor S in the chosen 
reference system depend  on the plate orientat ion and  
can be expressed via tensor ~o in the crystal-physical  
reference system (see, for example,  Sirotin & Shas- 
kol 'skaya,  1979): 

= Sat3ysgi~gjl3gk~/glS, (35) Si jk  I 0 

where ~ is the qJ-dependent matrix of t ransi t ion 
between the two reference systems; all the indices 
run over the values x, y and z, the summat ion  being 
taken over the repeating indices. 

For cubic crystals, tensor ~0 is fully de termined by 
three elastic constants S,1, S,2 and &4: 

s% =t 
SII i f  i = j  = k = I 

Sl2 i f  i = j  ~ k = I 

$44/4 i f  i = k ~ j  = I or i = l ~ j  = k 

0 in all the remain ing  cases. 

(36) 

Relations (34)-(36) fully determine the matrices ;~1 A 
and S2, and from (32) and (33) the sought-for relation 
between the parameters of the displacement field can 
readily be obtained: 

I a t / 2 /  = $2571 . (37) 

- a z  / \ I / R y /  

In § 3 we have described an X-ray optical system 
having the symmetrff planexz. In this case a y  = f l  = 0 

and the matrices S1 and $2 can be reduced to the 
form 2 x 2. 

All the parameters  of  the d isplacement  field being 
de termined the coefficients f~ in the condi t ions of  
dynamica l  scattering (13) can be de termined as 

2 2 

f = k~' + ky + Eflkxk, + k z ( a x k x +  ayky -o t zkz ) .  (38) 
Rx Ry 
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